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XXII. Consideration of various Points of Analysis. By John
F. W. Herschel, Esq. F. R. S.

Read May 19, 1814.

On the Calculus of Generating Functions.

I whatever point of view we consider the theory of gene-.

rating functions, whether as the fertile source of new disco-
veries, or as a medium for exhibiting, in the most comprehensive
and uniform point of view, results alrcady known; we shall
find fresh cause to admire the profound and original genius
of its author. To the latter of these objects it is, however,
more peculiarly adapted, and perhaps, in the present state of
analytics, this may even be considered as the more precious
advantage of the two. Such has been the indefatigable activity
of those illustrious men, who have devoted themselves to the
pursuit of mathematical science, that analysis must be consi-
dered as already adequate to every purpose to which we can
reasonably hope to see it applied. The attention of the scien-
tific observer must now be directed to those elevated stations,
from which distinct and extended views of its arrangement as
a whole can be obtained. The calculus of generating func-
tions affords such a station, and commands a wider and more
magpnificent prospect than any which has yet been opened to
the view of the speculative philosopher. It becomes interest-
ing then to extend its application as far as possible in this line,
and to introduce it on every occasion where there seems any
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Mir. HERSCHEL on various points of Analysis, 441

probability of its coming successfully into play. Such have
been in part the considerations which determined me to adopt
it as a vehicle in laying before the Society some results of a
singular and interesting nature, derived indeed originally from
other principles, but which, like all the rest, flow with the ut-
most facility from the first elements of this calculus.

In the following pages I have uniformly made use of the
functional or characteristic notation ; together with the method
of separating (where it could conveniently be done) the sym-
bols of operation from those of quantity, This method I have,
perhaps, extended and carried somewhat farther than has
hitherto been customary ; but, I trust, without losing sight of
its grand and ultimate object, the union of extreme generality
with conciseness of expression. To avoid the necessity of
continual explanation; I shall here set down the leading points
of the system. ~

I. The signs : x () are used to separate the symbol of ope-
ration from that of the quantity operated upon, thus:

J(2),0:loga, { & —1{" x0 (2). |

II. 1. The combination of two operations is represented by
placing their symbols together in their proper order. Thus,
¢ () is simply written ¢ (2). For example, if ¢ (z) =
14 z,and () == 2°, then ¢ (z) = 1 4 2*, and o ()
== (1 + x)“. » : -

2. When several operations combined are considered as
one, their characteristics are inclosed in parentheses (). Thus

Slog o (z) = (floge): =z

8. The repetition of the same operation f being denoted ( by

the first rule of this article) by ff, ff/, &c. may be more con-
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cisely represented thus, f* /%, . .. . f; and this furnishes us
with a general and very simple notation for the reverse ope-
ration of that denoted by f. For since /" f* (z) = f"*+" (z),
if we makem = — 1,2 = + 1, we find f ' f (z) = f° ()
= z with the operation f no times performed, = z. Thus f "
is the characteristic of that operation which must be performed
on f () to reduce it to x: that is, of the reverse operation.
This is surely a simpler and more expressive method than that
of inverting the characteristic,* accentuating it on the left side,
or below;I or other similar contrivances. For instance,

log—lx= ex=1+—‘:i+ f—;—+&c.

— s 5

tan T == -':i——fs--[--’ﬁs——-&c.

4- If a combination of operations, as ¢ &c. be 7 times re-
peated in their order, thus; ¢ded . ... (), it will, by the
second and third rules of this article be denoted by (¢¢)": .
It must be observed, however, that (¢})” is not the same as
¢" J", except in some particular cases. '

II1. 1. If any number of functions of a symbol z be added,
subtracted, or otherwise combined, the resulting function is
expressed by the same combination of their characteristics,
observing the following conditions.

2. The actual multiplication of two functions ¢ (z) and { ()
is expressed by inserting a full point between their charac-
teristics, thus, ¢ . § () = ¢ (2) . ¢ (2).

8. The actual elevation of a function to any power is thus

# LarLace. Journal de ’Ecole Polytechnique. No. 15,

4+ Mon~ce. Savans Etrangers. 1773.
.1 K~rcur, Philosophical Transactions, 1811. Part I.
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expressed, {f(a:) }"‘—_-: {f}" : %, to distinguish it from f” (z),
whose signification has already been explained.
4 If F (z) be developable in any series of the form
az® 4 b2® 4 cz’ + &e.
the following abbreviations are used
(Fro):z=a.0"(2) +b.¢" (2) +¢.¢"(2) + &e.
and, (F { }).x_.a. {cp(x)} + b. {cp(x)}3+ &e.
Thus (for example)
d Xy=) + + dz® + &c.

dz
1
{log )

IV. 1. Dis used as the sign of derivation. It is, properly
speaking, the sign of an operation performed, not on quantity,
but on the characteristic which it immediately precedes; by
which the operation denoted by that characteristic is altered.
For instance: D sin. == cos.; D cos. = = sin. But it must
be observed that D log. —t == log. —1.

2. The sign D affects only the characteristic next following
it, thus, Dof () = (De¢) : f (x). Ifit be intended to affect
a combination of operations, the rule II, 2 must be observed.
Thus, D (¢f ): z, D" (J log. 7") : log. z.

V. Every functional characteristic is affected by all the cha-
racteristics preceding it, in the same manner as if it were a
symbol of quantity.

VI. Every characteristic of opuratlon performed on quantity
affects all which follows it, as if it were one symbol. Thus if

f(z) =az b’ -+ &c.; we shall have

j

}xx—"x-l-ex-}-e”-l-&c
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fDe(z) =a.{Dp(2)}*+b.{De¢ ()} + &e.
This rule does not extend to the signs D, d, A, 4, /, £, accord-
ing to the remark in IV. 1.

‘These rules will suffice to explain whatever may appear
obscure or capricious in the following sheets. We shall now
proceed to their practical application.

If ¢ (¢) be a function of ¢, developable in a series

A_ t7 % ... A+ A+ . AT A
¢ (t) is said to be the generating function of A, and it may

- be said to be taken with respect to #. "To this we shall appro-
priate a peculiar symbol Gy, as follows :

¢ (¢) = G, {A.r}
When only one symbol £ is used, the index below the G may
be understood, and our equation will be
¢ (1) =G {A,}.
If ¢ (¢, t') be a function of 2, t', developable in a double
series " |

A_._m,_wt °°,Zl"°°+..,._A_w’yt""°°.l/y+.“A

t—oo‘t,oo

- 00, 00
+. . . . . . . . . . . . . . L] . . . . . .
+ A, LT A 517 A, .07
+o . . a . ° ® . . . . . . . . . * ° - . .

3 P =R o ) )

F Al T Ayt v A T e,

¢ (2, 1) is said to be the generating function of A _ , With
respect to £, ¢/, and may be thus expressed ;

o (t1)=0G", {A,,}
and so on, if there be any number of symbols ¢, #, 2", &c To
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denote the sum of all the terms of a series, we shall use the
sign S, thus,

e (1)=S {Axt”} , and in like manner ¢ (¢, 1) = S".,,-,y{A

AN

For ¢ let ht be written, and we obtain
o (k) =5 {A, (m)"} =8 {An" .} =G {An7}

Thus, if the generating function of A _be ¢ (t), that of A 4"
will be ¢ (k).

Let this equation be multiplied by t=", and we get

t™ ¢ (ht) =S A, b7 . "}
=S {A,, .} =G {A,,,. h"'”}

If then the generatmg function of A be ¢ (t) that of A_,
K1 will be t ™" . o (ht).

2% 4

Again, it is easy to see that

a.G{A,} +b.G{B} +&. =G {aA +be+&¢}
and thus we have
(et 078 o™ o &e) o (B) = GiaA,, ¥ 4
bA, o h*HE + & } |
and, ifh =1 .
(ar=* b &) 0 () =G {aA, ., +bAsye 4 &c}(a).

Let us express the function aA, , + bAx4g + &c by the
symbol vA, and let

at® 4 bt® + et + &e. =1 (1)

vA, then will be the same asf (A,), provided that in the

MDCCCXIV, 3 M
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developement of f (A,),A, , ; be every where written for { A x} l,
and to derive the generating function of vA _from thatof A, we

have only to multiply the latter by f (=), thus
Gival=0o().f(5) .. ()

Let now vax, VSAI, &c. denote the respective values of the
expression
aA .+ be+B + &c.
When instead of A we write vA,, V’A,, &c. thatis,

VA =aviA,,, 4 VA, &o

and it is easy to see that we shall have
G {vax}‘ ={/(F)} e - - . . (a)
Let us now denote by /' H—) the expréssion
gt b P e &

and by ’viAx the function formed from ‘f (—;—-) in the same
manner as we formed viAt from f (—-E—) The equation (g)
then may be thus written '

G {va b ={Ur"):r (5 e
If then { it (t‘)}i be developed by the ordinary methods
into a series of the form

e L et = Sz{aztz}
we shall ¢btain

G{via}=s{a.{7(3) §*fol)=5.{ar.G{'v s} ],
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and of course
i —o i
VA, =a_,'vV TA,4+..... a,A, 4 a,'vA, 4 .
loy ® . .
awV ‘A‘t’.o...'(i).
Thus we may always develope v'Ax in a series containing

only the successive orders of 's7A , such as ‘v*A,, &c.

If the developement of { ! (t)}i contain no negative
powers of ¢, we have

. = {1t
£ 1.2 sevee £
and consequently
B N ol PN i

VA, & ..o (5)
Let'vA, = A, , — A, and we have f]‘{—:—) = -1,

Dﬂ{f}in

ViA = {f(l)} A+ { }l“AA.,, + ——r— . A
A+8zc,....... .. (6) , \
for it is evident that when ¢ = o, D* { f(1r+ t)}i becomes
D* { I }i: 1. To take a particular case, let VA, = A4, and
viAx = A, of (-;—) =-:—, and D {f}i.: 1=i(i=—1)..
(i—=z41), whence

A=A, ++. 08, +HE0 AA 4 & (7).
Again, if we suppose VA = AA,r =A,,  —A,ad'vA,

and [~ (1) =141, whence we obtain

= A, ,» We shall obtain from (5)
gMe
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. ; _)
A'A3=Ax+i < Ax+,_‘+ (z 1 Ax+i_2—&c;...(8)
But to proceed. We have,
i i X t t t
G’{JE A_J:S{Axx.t }=;1—t.d¢-1?d ...... a't-.dcp(t)

or which is the same thing, |
G{FA =i dmmd... ... d{olog™": logt}

Now,

d{¢ log™1: logt} » D(¢ log™"): log x dlogt

dlog —dlogt = (plog™"):log
d1D (plog™ 1y : 1 2 —
o (¢d',§gt) og-t-} = D? (¢ log™?): log¢

and so on. Thus our equation becomes .
G {xiAx.} = D’ (¢ log™"): log ¢
and, if f (z) = az* + ba® + &c, we see that
G {A,.f(2)} = (aD* 4 bD* + &) (¢ log™"): log?
= (f:D) (¢ log—=):logt;..... (9)
If f(x) be a rational integral function of z, the second member
of this equation will require only the ordinary rules of the
. differential calculus for its formation, and of course the first
may be rigorousiy obtained.
“Conceive f(¢) and F (¢') to be developed into the two series
S, {a x"tr} and Sy {Ay 24 } , and let us consider the double
series ’

c=5, {axAy )
First, ¢ may be expressed as follows,
r=S$, {a‘,;it’. S,{A, . ("¢)'}} =s, {a,/" F(/")]

But by a similar mode of reasoning, we should also find
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c=S,{A.f(th’)}

or, T =Sx{Axll‘t.f(thx)}
for since x and y vary through all their values, these two sums
are identical, Equating then the values of ¢

s{a_u* f(th")} G, {a. F(¢h)}

= (F: t kP ) (flog™") : log¢
Let #' =1, and for & writing 21, and adding or subtracting

5 — D —D
S{Ax.f('bx)ff“"‘ >}=F<b>f”b > (flog=1): log ¢; (10)

II. On Logariihmic Transcendents.

The equation ‘we have just arrived at affords us a method
‘of exhibiting, in a finite form, the sum of the series in its first
member, provided we possess the means of obtaining the
second ; and it appears, by what we have before remarked,
that this can be performed, whenever F (AD) + F (2—D) is a’
rational irtegral function of D. This includes among the forms
of F those remarkable functions denominated by Mr. SpencE,
« Logarithmic Transcendents,” and we shall now proceed, by
the help of the general property demonstrated by that author
in his « Essay &c.”” to derive from these principles the sum-
mation of one of the most extemxve classes of series which has
yet reccived discussion.

Adopting Mr. SpENCE’s notation, we will represent the
series -

x* x®

LA SRS S 7
l'l z’l 3

by the symbol »L (1 4= z). The property then alluded to is
as follows:
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L (1 4 %) + (=1L (42
2

continued as far as it will go without involving negative

Supposing then F (¢)="L (1 4 ¢), and

°L (2] . (log. z)" + *L (2). (log. )" + &

12....1 1.2.0..(n=—2)

powers of log. z.
writing ¢ for & we obtain
S {(-——(x”* A (--1)"-f(t-""‘°)} -
x" .

TeZecas L2....{n—2)
A very remarkable case of this equation is when =1, or

log ¢ = o, for then 2/ log™"): log ¢ — the coefficient of # in
12 o s 02 .

(‘L(z) L I YO Ml RS &c)(flo ~1):log#; (11)

the developement of f log— () or of f (¢). If then we
suppose '
f(Hy=a4at+tat +....af 4 &

we shall have the following equation:
S{rtl 7 4 (T =L (s) . 0,8 + "L (2)- o,

The second member being continued so long as it does not

involve 'negatikve powers of 6.
With regard to the functions “L(2), *L(2), &c. we have, as

is well known
Lizg)=1—141—1+4 &c.==;,and

2 (22— ¥ B
L(Q) I TE TN (2x) 2e—1

2o D€INg the zth number of BErNoUILLI.
The equation (12) by assigning specific forms to f (%)
affords an indefinite variety of interesting results, of which we
shall only notice a few, the most remarkable.

B

1. Let/(t) = —=-"- . and for n write an—1, and 6V =1 ford.

e’f"‘ + & (
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The usual exponential expression for tan. 6, reduced into two
fractions, gives :

tan. § = e = ., ... (13)

V:x_}.;e‘/'—‘" .\/:"_x_i_s-—és/..la----.....

Thus, the first member of (12) becomes

r :
. xb tan. 0 tan. 26 tan. 30
%Si(—l)x+x° tan. ! }or,%{ an _ ftan.2 + an. 3 — &c.

p2n—1 L 3n—1 p2n—1 32n—1

In order to obtain the coeflicients a , By vve @y b in the

second, we have,
o §

f()=g== a, 4 a .t 4a 1+ &

.
Now f () may also be thrown into the form

1 —1 s . o] + —1 N
2{\/:+nt :+.—t}+”z—{~/:+‘t \/:-T-}-e—t}

which is the same as

‘tan( : )+-L1/—-1--—-sec.(\/t )

1

Thus the even values of 4, are given by the developement

of sec. ( '\7—_‘:—1) and the odd by that of tan. (é) and hence

it is easy to see that
(=¥ ! 2281 (528 .
Yarm1 = v 1.23 e e o0 (2%)  22=1" (14)

and

Dl

— 2x 2z 22 41 2x
az\z'_”“l.z...(z.t).zz'“"|"{1 —-{3 — 1 }+{5zx

— &c. }-—- &c.}; (15) |
but a general value of 2, may readily be obtained by the

immediate consideration of the function f (¢') itself, as follows:
We know that
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! . 0

O == s Dx —
z LZ,eoon %/—-xmg-{log“'l}
Now we have

t
D(flog™"): ¢ = ——=

'(-\7——-1_}. ;t)z

— v 4
Dz 1 I . t — Ez T.¢

© ° . ° ° . ° ° . . . . . ° . °

— o xt 4 1 {(z—1)¢ x—1p
D* lo 1 = A" 4+ "A.e + .. A
(f g ) (V=T 4 lt)x--}- I

In order to determine the numerator of this fraction, we shall

adopt the elegant artifice used by LapLack * on a similar -
occasion.

o x P2 ¢ t . e INESH z
A et ..., A.e.._-(\/--l-f—s)» .D {JJ,\/;:

= — (V—14 )™ D {'
VI e Y VT &l

= (—1)" . (VI 4 )",
{ e e VI et T g T &C.}
Now, as this equation is rigorous, and the first member con=-

tains only positive powers of ¢, the negative powers in the
second must destroy each other,and may therefore be neglected.

Expanding then (et + vV Z1)"* in powers of ¢, multiplying
together the two series, and retaining only positive powers
of st, we find

® Larrace. Mém. de PAcad. 1779. Sur P’usage du calc. des diff. partielles dans
la théorie des suites. '
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oA.Ext+.-o*_l4A‘.'8t$ .
z ext_ {9.:.- ‘x+l 1 } /g , glz=~1)t
= (-—1 )”"" .
__{3.: .r+| e +(_f_-!—_12_5 1} (:--z)t_l_&ci

And after the substitution of o for #, or 1 for ¢* and its powers

we obtain,
a (___nx+1
5T w4 VT
1= [ 2 — ’-‘-—— 1‘}1/——1
I { 30000 (16)

L-—{S—x—ﬂé +(.:’_t.!2..£ } + &c.
The equation (12) will thus take the following form,

tan
S+ BE =Y Y Y )
~ where - B
221’ (22.?_‘) . (22'1—* zx—l__l) . wzu-—z.t v )
221 KZ.ee.s (28) X120 0o . (2n=—2z) " " 2ge—1 " an~z.r—l; (18)

. Retaining the same form of the function £, and of course
the same value of a_, for z write 2n, and for 9, 6 . V1, and

the first member of (12) becomes
LIy, ™ _ of et }
{V 1. L(Q) { 22", cos 28 }
And the second, - '
a,.™L(2) — &, "'L{2) .4 ...+ (—1)".°L(2) . 0" a

Now, sincea_ == —;’—:— co}lectmg into one the eoefficients of
1 -1

*L(2),viz.: ¥ —1 —2a_, we find their sum equal to 1, and of

n

course,
MDCCCXIV, 3N
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s{ (=t }...Z"L(2)+Y 92+ Y, 04 Y, 6 (19)

. cos x0
where
Y — (—1)F (@301 _y)  ,2N—28 / .
227 q2...(22) X 1.2... (2n—25). Q2F M= 2ol
[17"—{ g"— 2 %)) |
5 '> ; (20)

L+ 5 —8& } — & |

If in this equation for 8 we write « - §, we shall obtain the

sum of the series

I 1 1

12" . cos @ 22" . cos 20 32", cos 30

And by addition, of

 § I 1

1%"  cosb 3™, cos 30 5

+ &c; . .... (21)

8. Letf(t) = \/—' "'i and let 2n be written for # and

-1+
6v" 1 for §; and the first member of (12) becomes

SN (—1)t+ 1
V—-—-l.S{ > }

" cos 20

Now the developement of — ; being a4 a t + &, that

l+:
of f(e ) will be
(et—-V:-—'l-){ao-I-a‘t—l— &c} =

={(1__1/__1)+-i—+1—_f-;-+&c} .{ao+a,t+&c}

and the coefficient of ¢* will be found equal to

a

(1=V=i).a 4 22y 2y ©

) § 1.2 1.2...2

Thus the application of (12) gives the following equation
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(—)%+ 1P I
s{ .__} = "L(2) 4+ Y, Y, 04 .Y, 0

22" cus 20
where _
Y (1) B (QRN— Iy g2n—2z B ’ { v
p—rd ——e 1 -1
BTV 1z .. ... (1) Z—22—1 ( » )

- @
LT~ ST ) =)
Which compared with the value of Y _ before found (20)

gives the following singular equations,

- Cpppmmz | Pop—y L 3V gy
0-—-—a2x 1.2 +l234+"";—;—z2x) ’o-tto.(gs)

V= 27—1 23y @y
2$'—V 1. ! 1 + 1.2.3 +. o e ws——

YUt Lz .. (20—1
1
7 1.2..(z2) ° ‘ (9'4')
The latter of these two equations affords. the even values of a,

in terms of the odd, and hence we are enabled to express the

. . 1 __ 2x41 *
sum of the series i + e &c="""C(1)

by means of the numbers of BErRNou1LLI, which EULER appears
to have considered -as impracticable.f We need hardly re-

* See ¢« Essay on Logarithmic Transcendents,” page 51. I should not omit to
observe that the equations in p. 69 of that work, expressing the value of the function
2C (x) + (=1)" ."C (2#™") when combined with our equation (10) by making

t 13 ' . . . s
F@)="C(#) = Friiem + &c, afford a series of results, highly interesting, but
which the necessary limits of this paper forbid me at present to dilate on.

4+ ¢ Per hos autem numeros Bernouillianos secans exprimi non potest, sed requirit
¢ alios numeros qui in summas potestatum reciprocarum imparium ingrediuntur, si
¢ enim ponatur,

1 1 X L4
l——3—-+-§-—-7—+&c_a.-;;
1 1 1 8 =3
1-—-3-,—-*-;’——;—'-—}&‘::';3-1’&0'
gN 2
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mark that the imaginary form here assumed by a__ is merely
zx
apparent.
To proceed. Let the equation (17), multiplied by d4, be inte«
grated between the limits o and 4, and we find after all reduc-
tions.

&) BV e a3 "
(sec 6) . (cos 20) . (sec 89)' %' . &c. = log
oY LY DL (25).
The value of Y, | being given by the equation (18)
Again, if we suppose, for the sake of brevity
L(2) 4 Y, . 00 4. . .Y, 0" =1U ()

9271 + 1

2 ° 2n4-1

and "L (2) .+ + Y, = +. . =D~ U(0),
we shall obtain, by operating in the same manner on (19) and
the equations derived from it, expressing the values of the
series (21) and (22).%

“erit e =1, B & 1, y == 5, &c. ¢x hisque valoribus obtinebitur
B 79

sec.z__u.}-.i-;w-q- 2'3'4r‘+&c o

Evvrer. Inst. Calc. Diff. Pars posterior. Cap. VIIL p. 542.

The general value of 2* +1C(1) as deduced from our equation (24) in terms of the
numbers of BErRnoviLL: is as follows;

2‘”*‘(}(;) _ ( )zm—j—x {Qm-‘l(zm.—x) Bzxmn B zx—-z( 208=—2 1)
U 23 ... (22) T g 1.2 <0 (20—2)
.B2x—3 E=1 2. (2%=1) B1
..... Ceeeaeen - L2 r
1.2.3 + (=1 1.2 T2, (2x—2
\Z 1 ‘
+ (=) ‘T2 . (2x)’

o/

* The constant added to complete these integrals is determined by making 0 = o

. . . » . . .
in which case since cot (I — 18) = 1, their first members vanish when n is greater
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S {2 tog wot (£ — 2]} =D U@); .. .. (26)
S {7+ log cot (2 — Z2) }=D""U (s) =D~ Uw4-6);(27)

log cot (l — ;(jf_-—-l)ﬂ)}

S
{(2.1,‘ l)zn-l-l

' 3U@® +U@B =U(r +0) '

{ ~ },..(28)
* In the last of these equations, if we write ~ (—";— + 29) for
8, we obtain the following equation, corresponding to (25)

1\2nt1 (i)zn—,}—l (_}_)2"4—1
. T 31 ‘ 5 ‘
(tan 6) . (cot gf) . (tan 56) &c =
(D™ U@+ D™ U (— ;_za)-b—‘u(—}_ze), |

lOg_ll z 5 (29)‘
These are but a few of the very singular results which may
be deduced from our equation (12); but I shall forbear to
extend this paper to an unnecessary length by any farther

applications of it.

than unity; but when z = o, the series § { --—-L-} and S{ } be-
L2 (25mm1) 21

coming infinite, they take the forms o x log (1) which is altogether vague and
inconclusive. Qur equations (27) and (28), (29), then, are defective in this case, -
and we can only conclude that the function
i Py
(tan 8)T . (cot 36)7 . &c»
is independent on 6, or-constant. There seems reason to conclude from other prin-
2

k3
,”.i

ciples however that this constant is e 7§, or more generally, ¢ (2i41)7%; beirigany

integer, positive or negative,
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L. On Functional Equations.

The determination of functions from given conditions is a
point of such importance, not only in the partial differential
calculus, but also in a variety of other branches, that it has
occupied the attention of the most eminent Aﬁalysts, and it
must be confessed, not without considerable success. Their
researches, however, have hitherto extended no farther than
to such conditions as involve only the unknown function, ¢
without any of its superior or inferior orders, ¢*, ¢%, . . . &c,
¢, &c. It is to equations of this latter kind, therefore, that
we now propose to direct our attention.

The successive orders of any function f (x) may be pro-
duced, either by actually writing f () for z in the expression
of f (), in which case the general value of /* (z) must be

concluded from induction; or more elegantly by the following
method.

Assume f* (z) = u_and we have f*** (1) =u_
0= uz+] ——f (uz)
an equation of differences whose integral will be of the form
' u,=F (2, C)

C being an arbitrary quantity independent on z. Let z = o,
and we have

+1

F0.C) =4, = () = s
an equation which gives C in functions of x.
For example; let f (r) = 22*— 1, and we have

2
o=u, .  —au 1
and integrating,
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u, =1 {sz + C—zz}
Now, if we make u, =z, we get
C=z+4+vVr—1
and consequently, '

2 e s 2% e 2%
f(x)=1% {(x + VI =1) 4 (2 —=VZ=1) }
If we suppose ¢ (r, y) to denote any function of x and y,

and conceive this expression substituted for z, as follows ;

® {‘P (x’y)'y}’
we shall have the second partial function, taken with respect
to », which we may denote thus, ' (x,y). If we repeat,
or conceive repeated, this operation m times, we shall have the
mth partial function with respect to x:

o™ (z,y) =0 {" " (z.3) .5}
If the mth partial function with respect to x be in like manner
successively substituted z times for y in the expression ¢ (z,y),
we shall obtain a result,

o™ (z.9) =o {7, ¢™" (2,5},
and so on for more variables, %, w, &c. —. An equation con-
taining any number of the successive orders ¢° (z) = z, ¢ (z),
....@" (), of a function ¢, and from which ¢ is to be deter-

mined, is called a functional equation of the nth order, in ¢.
Thus the equation ,

0=¢"(z) — (1 +0).0¢(z) + bz
is a functional equation of the second order, and is satisfied by
the following

¢ () = a4 bz
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An equation between any number of the partial functions
™™ & (x,9, %, &c) for determining the form of ¢ (z, y,
%, &c) is called an equation of partial functions, and its order
‘may be denoted in the same manner. Thus

0o=10""(2,9) + 0" (z,9) — (a4b41). 0(z,9) +¢
is an equation of partial functions of the second order with
two variables, and is satisfied by the equation
¢ (z,y) =az 4 by +¢

Let ¢ () be a function of z, and a certain number of con-
stants a, b, ¢,. .. And from this expression conceive ¢” (), ch
() &c to be successively formed which will be functions
also of a, b, &c. If the number of these constants be z, we
may thus produce z -}- 1 such functions of them, which will
be respectively equal to the several orders of ¢ which they
represent. Thus we have # 4= 1 equations involving the »
quantities a, b, ¢, &c which may therefore be eliminated, and

the resulting equation between z, ¢" (), 0” () &c will
therefore be independent on” them. As far then as regards
this equation they are arbitrary, so that in reascending from a
functional equation which contains #» -4 1 different orders of ¢
(not including ¢° (z) or x) n arbitrary constants must be
introduced. The reasoning here made use of is sufficiently
plausible, and in fact, no other than has been adduced in de-
monstratioh of well known and important truths. The con-
clusion too, to the extent of its literal meaning, is correct.
But we have here to notice a paradox of a very singular nature,
viz: that evenin the simplest cases imaginable (such as ¢* ()
== z) the general expression for ¢ (x) may contain, not one
or two, but an unlimited number of arbitrary constants, nay
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even one or more arbitrary functions. A nearer attention to
every step of the above reasoning will explain this paradox.
But what has been said will serve to make us cautious in trust=-
ing implicitly to all its other applications.

Problem 1. To determine ¢ (x) from the equation ¢* ()
= zr. Assume z a function of z, and » a functional charac-
teristic, which shall satisfy the following conditions

T=1U, () = Uyyre

From these, we obtain

¢ (), thatis, ¢ (uz) or (eu), =L R (a)
and ¢ (z) or @ $0 (2)} = (ou),,, =z =1, . ... (b)
and, subtracting, (eu )x+1 — (pu), = — (u%_'_l —u,)
that is, A {(q;u)z+uz} N N ()

and integrating,

o= (¢u), +u, + C.
Now by cross-multiplication of the equations (a) and (b) we
find, \
Uy - (¢’u)z+1 =u, . (1),
Thus the function «_ . (¢u), does not vary when z changes
to 2 -} 1, and of course must be considered as constant in the

integration of (¢). C therefore may be any function of », . (u)*,

and thus our equation becomes
o=u, + (o), +f {u,-0 (1)}
oro=z+¢(z)+f{z.0(2)}

an equation from which ¢ (z) may be obtained for any as-
signed form of the function . Thus if f (z) = a 4 bz,
MDCCCXI1V. 30
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o=a-4 x4 (14 bz).0(x)
iz

which satisfies the condition proposed ; and by giving f other
forms, we should obtain other values of ¢ (z).

The subsidiary function z, and the characteristic  are not
then necessary to be known but as a matter of curiosity. They
may however be found when ¢ is determined, by the resolu-
tion of the equation of differences ¢ (x ) ==u,  which gives

and ¢ (r) = —

z+
the form of the function #_ in #, and % is given by the equation

T=u,orx=u"'(zx).
Aliter. Assume as before, + = U, ¢ (z) = Uyy

then we have ’

cp(uz_*_l)::uz; B (A F
Now, z = u_ therefore ¢ (z) == ¢ (4,), that is, Uy, =@ ()
and for z writing z —1, u_= eu__ which being substituted
in (d) gives » ,
¢ (uz+l) =9 (uz—l)'.
Now this is a perfect function ¢ on both sides, and of course,
taking the inverse function ¢—* on both sides

uz_“ —.:uz

-1

whence, "

u, = C {cos 27:2:} 4+ (—1)*. C {cos ewz}
C and C' being two arbitrary functional characteristics. Now
u, = x, and consequently

r==C {cos zqrz’; + (—1)*.C {cos erz}.
From this conceive 2 found in functions of x, and call it Z ()
then,
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%y, =0(x)=C]cosenZ (z)} — (—1)*®.C' {cos exZ (z)}.
This method applies also to the more general equation ¢* (z)
= f (z), by the substitutions f (z) = u_, ¢ (z) = U, Ut
owing to the transcendental equations it introduces, must be
regarded as totally ineffectual and useless.

Prob. II. Given ¢ () = f (z). Required at least one
satisfactory value of ¢ (z).

Let the general expression of /* (x) in functions of z and z
found according to the method above explained be F {z, x}:

1

we have then ¢ = #, and ¢ = f *, that is

1
0 (2) =/ () =F {3 2}.

Ex. 1. Let f(z) = 82°—1, or ¢ (x) = 22°—1, and we find

ff(z) = ——{(x-}-\/x )’ + - )zz}
and of course
f-;; (x) = <p(x)=-}{(x+ Vo)V 4 (z --\/.1‘2——-1)"_‘/_2 }
We may here observe that any one of the n values of "v' 2 will
equally afford a satisfactory value of ¢ (z).

‘ , 48z
Ex. 2. Let ¢" (1) = -,Ia\x = f (x)

Assume = =-‘ i A= T p = {-ar“ + aa}%, ] =m
and we shall find »

‘ . \
fut@=wal o7 —{at @te]

f_’lr (z) oro (z) = :
for—@tw} o® = it @w |

where any of the # values of v may be taken, and thus as
302
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‘many different values of ¢ () be obtained. This example
. depends on the integration of an equation of differences of the
form
o =u,, .uz+A.uz+l+B.uz+C
a particular case of which had been previously integrated by
Larrack in the Journal de I'Ecole Polytechnique.
Ez. g. To take an instance of the application of these

equations to geometrical pro- . —
blems, let AM be an hyper- e
bola whose axis is CP and P
centre C, and let it be re- /

quired to find a curve am

such that drawing the ordi-

nate PMm, making Cd = - W 'z
Pm and again erecting d/ .
parallel to PM, if this be repeated # times the last ordinate f%
shall be equal to PM. Lety = ¢ (z) be the equation of am
and y* == (1 —¢*) (¢"—2*) that of 4M, then dl = ¢ (Cd)
= ¢ (Pm) = ¢’ () and in like manner, fk=¢" (z)== P M, that
is, o (z) = f (z) = /(1 =~¢) (& — 1*); consequently,

1 I I :
fr@)=c¢@)= {(e2~1)" L — :::;{(ez—- 1)7 —1 } . a*}{‘-
Thus we see, that am is also an hyperbola, whose centre is C,
and calling a’ and ¢’ its semiaxis and excentricity, we have

¢ = \/(e’e-—l)%+ Land a' =a. {;—:—:—: . e;:—:——z}%
If AM be a right angled hyperbola, or ¢ = v/ 2, we shall

S d P

have ¢ = v/ 2 and o' = ;‘f.-_n-; that is, am is also a right an-

) . . . 1
gled hyperbola, having its axis —= part of that of 4M. Ife
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be <1, and n odd, we shall have ¢’ also < 1. Thus if the curve
AM be an ellipse, am is also a concentric ellipse. The equa-
tions of Ex. 2. geometrically expressed afford a property of
the hyperbola somethmg similar.

IV. On djjferential Equations of the first degree.

'Any equation of this specics may be reduced to the form
o=u-4'A.Du4*A.Ds+4...."A.Du4X; ... (1)
u being the unknown, and *A, . ... "A, X, known functions
of z. To integrate it, assume the following equations

u 4 ‘aDu = u"
u") + 2D =@

-

u(u—z) +n—1“Du(n-z)=u(n~—1) - ’
£V DU 4 X = W™ =0 |
From these, eliminating successively '), . .. #"=", we
obtain
AL --u+'u Du
—_u+( z+ a+ aDla) Du-l- s. 2. D’u

* . L3 . . L]

- - - -

o=u ——u+ { -|- ca(l +D’a)+&c} Du

. %0, .. %2 Du4X;.....(3) | ‘

The comparison of the coefficients of this equation with A, ...
2A, gwes n equations for determmmg @y« « . "z, into which X
does not enter.  Consequently these functions are independent
on X, and therefure, the same asif X = o. Now the successive

‘integr}ation of (2) gives
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u..---.-:{log‘~l "fjx} /‘mg“f{ y ..... e
/log ”— ll ‘)/V_Xnizn log—" %; e (1) /

which by writing o for X, and adding a constant at each
integration becomes,

| .
u="C.log™" [SZ 4 °C. {log™ "d’}fg [ %) . dz + &c.(5)

Now, if (')u, )y, . . . ™y be the particular integrals of
o=u-4'A.Du4...."A.Du; ... ..........(6)
we shall have, when X = o, o
u="C. "y 4 °C. "Wy 4 3C. B + &e.
And comparing this with the expression (5), we find
= = Dlog Mu;

(2),
------.:.-—_Dlog{l (‘)u.Dmu};
3y
- 12 (1) O o L
___Dlog{ a. . u'D('HZ'D'_”('E: .

&c = &c.

Suppose now that by any means whatever we can discover-
n—1 particular integrals(l)u, o Ty of (6), the original
equation deprived of its last term : then by the help of the first

. . . .1 :
n~—1 of these equations, the values of ', ...." 'a, are given,
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and from these, "z may be derived by considering that the
comparison of the equations (1) and (g) gives

Yl T e e ="A,or"a ="A. (‘ac. . "—-xu)_l
Having obtained ‘&, ...."s, pothing more is requisite for
obtaining a complete integral of (1), than to substitute their
values in equation (4).

The method here delivered of obtaining the known theorems
respecting the equation

o=u-4"'ADu+ ..."A. D"u}X
appears to have the advantage in point
of conciseness over any I have hitherto met with; a sufficient
apology for the revival of a subject whose theory, and whose
difficulties have been so long and completely understood.

In the case when X ==o0 and 'A, ... ™A are constant, the
method of separating the symbols of operation from those of
quantity, may be introduced with great elegance.

Let p, q, r, &c be the roots of

0=D"4 A D" .

and the equation (1) becomes
0=D—p)(D—¢q)...&c: u
which is satisfied by either of the equations
o= (D—p): u, 0= (D —gq): u, &c. or,

Du = pu, Dy = qu, &c.

Now these equations integrated give the following
u=e” y=", u=r<¢", &c. '

which are the particular integrals of the proposed, and of
eourse its complete integral will be

u="C. " 4 *C. " 4 3C. ¢* - &c.
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If there be m roots equal to p, we have

(D—p)": u =0, 0r (D—p)": uxe? =o.

Now, (D—p)": u. P :.::Dm{u . s""j’”} =o.
Therefore, integrating m times

. e ="C4'C.o4...."7C. 2™
and u::{°C-i&-‘C.:r:-{-....'"‘"C.x’""'}ep’c
which is the part of the integral arising from the equal roots p.

JOHN F. W. HERSCHEL.

London, Jan. 29, 1814



